陈艳老师谈4至6年级学生计算经常失误的解决之道

05.04.2016  20:21

  小学数学实际情况表明,一个学生的计算正确率的高低,与他口算能力的强弱是成正比例的。今天我们就有请到来自秦学教育伊顿名师精英数学团队的陈艳老师为大家讲解如何提高孩子计算能力呢?

  一、基础性训练

  小学生的年龄不同,口算的基础要求也不同。低中年级主要在一二位数的加法。高年级把一位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进大家思维及智力的发展是很有益的。大家可以把这项练习安排在两段的时间进行。 一是早读的时候,一是在家庭作业完成后安排一组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,大家先写出 算式,口算几遍后再直接写出得数。这样持续一段时间后,会发现自己口算的速度、正确率都会大大提高。

  二、针对性训练

  小学高年级数的主要形式已从整数转到了分数。在数的运算中,相信大家非常不喜欢异分母分数加法吧?因为它太容易出错啦。现在请大家自己想想,异分母分数加(减)法是不是只有下面这三种情况?

  1.两个分数,分母中大数是小数倍数的。

  如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算 :1/12+1/3=1/12+4/12=5/12

  2.两个分数,分母是互质数的。

  这 种情况从形式上看较难,相信大家也是最感头痛的,但完全可以化难为易: 它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积 的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91。

  如果两个分数的分子都是1,则口算更快。如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母 的和(16)。

  3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况。

  这种情况通常用短除法来求得公分 母,其实也可以在式子中直接口算通分,迅速得出结果。可用分母中大数扩大倍数的方法来求得公分母。具体 方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止。如1/8+3/10把大数10,2 倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数 (5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40。

  看了上面说的,大家是不是已经发现每种情况中的口算规律了啊?那么只要多练习,掌握了,问题就迎刃而解了。

  三、记忆性训练

  高年级的同学是不是觉得有时题目中的计算内容很广泛呢?这些运算有的无特定的口算规律,所以我必须通过记忆训练来解决。主要内容有:

  1.在自然数中10~24每个数的平方结果;

  2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积;

  3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化。

  以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能力,在计算时产生高的效率。

  英翔提高的不仅仅是成绩!

  四、规律性的训练

  1. 运算定律的熟练掌握。

  这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结合律、分配律。其中乘法分配律用途广形式多,有正用与反用 两方面内容,有整数、小数、分数的形式出现。 在带分数与整数相乘时,大家往往会忽略了乘法分配律的应用使计算复杂化。如2000/16×8,用了乘法分配律可 以直接口算出结果是1000,用化假分数的一般方法计算则耗时多且容易错。此外还有减法运算性质和商不变性质的运用等。

  2.规律性训练。

  主要是个位上的数是5的两位数的平方结果的口算方法。

  3. 掌握一些特例。

  如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子 大1、2、3等较小的数时,不管分母有多大,均可以直接口算。如12/7-6/7它的分子只相差1,它差的分子一定 比分母少1,结果不用计算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是 97/99。减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果。又如任意两位数与1.5积 的口算,就是两位数再加上它的一半。

  五、综合性训练

  1.以上几种情况的综合出现;

  2.四则混合的运算顺序综合训练。

  综合性训练有利于判断能力、反应速度的提高和口算方法的巩固。

  当然,以上这些情况,需要大家训练时持之以恒,否则三天打渔两天晒网,是难以收到预期效果的。 以上的五种训练,大家要循序渐进的来进行,更要持之以恒的训练。数学成绩的提高是需要一段时间的,不要太急于求成。